
Detecting chaos from time series

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 1007

(http://iopscience.iop.org/0305-4470/33/5/313)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) 1007–1016. Printed in the UK PII: S0305-4470(00)03642-8

Detecting chaos from time series

Gong Xiaofeng and C H Lai
Department of Physics, National University of Singapore, Singapore 119 260, Singapore

E-mail: scip7254@nus.edu.sg andphylaich@nus.edu.sg

Received 19 April 1999, in final form 11 November 1999

Abstract. In this paper, an entirely data-based method to detect chaos from the time series is
developed by introducingεp-neighbour points (thep-stepsε-neighbour points). We demonstrate
that for deterministic chaotic systems, there exists a linear relationship between the logarithm of
the average number ofεp-neighbour points, lnnp,ε , and the time step,p. The coefficient can be
related to the KS entropy of the system. The effects of the embedding dimension and noise are
also discussed.

Over the last decades chaotic behaviour of dynamical processes has been reported in many
scientific fields [1, 2]. Chaotic dynamics appears to provide a relatively simple and possibly
more satisfactory explanation of complex phenomena. However, it must be seriously
doubted whether there are chaotic attractors underlying all these systems. Consequently,
the classification of dynamical systems that one observes is a critical part of the analysis
of measured signals. In real experiments, usually only short time series, often distorted by
measurement errors, are available. It makes the numerical extraction of physically relevant
quantities such as the spectrum of Lyapunov exponents, the Kolmogorov–Sinai (KS) entropy
or metric entropy, and the fractal dimension a difficult task. Often the reliability of the results
is also not guaranteed. In general, the two major features which are used widely as classifiers
of chaotic systems are the fractal dimensions and Lyapunov exponents [3]. Fractal dimensions
are characteristic of the geometry of the attractor, and relate to the way points on the attractor
are distributed in thedE-dimensional space (dE refers to the embedding dimension). The
Lyapunov exponents serve to indicate how orbits on the attractor move apart (or together)
under the evolution of the dynamics. While a number of algorithms for detecting nonlinearity
of time series have been proposed (see [8, 14] and references therein), problems still exist.
For example, if an algorithm for estimating the Lyapunov spectra is blindly applied to a time
series that has a stochastic origin, it has been shown that spurious positive Lyapunov exponents
would be obtained [4]. There is thus a strong demand for new practical and reliable methods as
the complementary tools, which allows the determination of the nature of a given time series,
especially for a data set contaminated by noise. Although any single method may not be totally
conclusive, it will give us greater confidence about the nature of the data if the conclusions
obtained from different methods are similar. From the theoretical point of view, the KS entropy
is the most appropriate quantity to differentiate different classes of processes: the KS entropy is
zero for periodic processes, finite and positive for chaotic systems and infinitive for stochastic
processes. Of course, there will still be potential problems when real-world time series data
are considered; for example, if noisy chaos is observed, the calculated KS entropy should be
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infinite if the scale is small enough [18]. In this paper, we suggest a new method to identify
the chaotic data by investigating the average number of theεp-neighbours. The method is
entirely based on the data set, and can easily be applied to any time series without resorting
to Poincaŕe maps. We will argue that this measure is closely related to the KS entropy of the
underlying dynamics. Furthermore, this method is robust with respect to low-level noise, and
can even be used to provide a rough estimate of the ratio of signal-to-noise. The method is
established by considering the local properties of the point elements in the chaotic attractors.
Suppose we have an observed time series{s(k), k = 1, 2, . . . , N}. Using the standard time-
delay method [5–7], we can reconstruct the state space of the underlying system with the
d-dimensional delay-coordinate vectorsyk = (s(k), s(k + τ), . . . , s(k + (d − 1)τ )), whereτ
is the time delay, andd denotes the sufficiently high embedding dimension (e.g.d > 2D0,
whereD0 is the box counting dimension of the system). Now consider a typical point in the
attractor of the systemyk, and define theε-neighbourhood ofyk as

�(yk, ε) = {yj | ‖ yj − yk ‖< ε, j 6= k} (1)

where the distance takes, for computational efficiency, the following form:

‖ yk − yk′ ‖= max{| s(k + iτ )− s(k′ + iτ ) |, i = 0, 1, . . . , d − 1}. (2)

Let n(yk, ε) be the number of theε-neighbours ofyk (we also call such points theε0-
neighbours, for a reason that will become clear later). After one iteration,yk is mapped to
yk+1 = f (yk), and theyk ε-neighboursyj ∈ �(yk, ε) are mapped tof (yj ) for every j .
Suppose theε-neighbourhood ofyk+1 is�(yk+1, ε). We now consider the set

�1(yk, ε) = {yj |yj ∈ �(yk, ε) ∩�(yk+1, ε)}. (3)

Obviously, any pointyj ∈ �1(yk, ε) satisfies the following conditions simultaneously:

‖ yj − yk ‖< ε

‖ f (yj )− f (yk) ‖< ε.
(4)

Since these points will keep close toyk one step into future, we call such points theε1-
neighbours ofyk, and letn(yk+1, ε) denotes the number of these points. Continuing in this
manner, we can define theεp-neighbourhood ofyk as

�p(yk, ε) = {yj |yj ∈ �(yk, ε) ∩�(yk+1, ε) · · · ∩�(yk+p, ε), j 6= k}
= {yj | ‖ yj+i − yk+i ‖< ε, i = 0, 1, 2, . . . , p, j 6= k} (5)

and the number of theεp-neighbours isn(yk+p, ε), wherep = 1, 2, . . . . The number of the
εp-neighboursn(yk+p, ε) reflects the local property of the system. For a chaotic system, in
fact, this quantity is related to the KS entropy of the system. To show this, let us consider
for simplicity the two-dimensional hyperbolic chaotic map. In this case, the phase space can
be partitioned into stable and unstable manifolds. Suppose at timet + p, the (square)ε-
neighbourhood of a typical pointxt+p in the attractor isS(xt+p, ε× ε) (see figure 1), where we
have chosen the sides of the square to be along the stable and unstable manifold, respectively.
Now letxt be thep-step pre-image ofxt+p. If ε is small enough, thep-step pre-image of the
neighbourhoodS(xt+p, ε × ε) can be approximately written asS(xt , εe−pλ1 × εe−pλ2), where
S(xt , εe−pλ1 × εe−pλ2) represents the rectangle neighbourhood ofxt , and the lengths of the
two sides areεe−pλ1 andεe−pλ2 (corresponding to the vertical thick framed slice on the left of
figure 1). Hereλ1 > 0 andλ2 < 0 are the Lyapunov exponents of the system. According to
the definition above (in equation (5)), theεp-neighbourhood ofxt should be distributed within
the areaS(xt , εe−pλ1×ε) (corresponding to the shadowed part in figure 1). On the other hand,
if we take local fractality into account, we get

n(xt , ε) ∼ εD1 · εD2

∼ εD1+D2 (6)
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Figure 1. A schematic diagram illustrating the relationship between the number of theεp-
neighbours,n(yt+p, ε), and the dynamical quantities of the system.

and

n(xt+p, ε) ∼ (εe−pλ1)D1 · εD2

∼ n(xt , ε)e−pλ1D1 (7)

whereDi (i = 1, 2) are called partial dimensions and are the information dimensions of the
sets formed by the intersection of the attractor with the unstable or stable directions related to
λi [15,19]. Using the generalized Pesin identity for KS entropy [15,19]

hKS =
∑
i;λi>0

Diλi. (8)

Equation (7) can then be rewritten as

n(xt+p, ε) ∼ n(xt , ε)e−phKS . (9)

It should be stated that the above derivation cannot be considered as a rigorous proof; a
formal mathematical theorem about this result can be found in [20]. In fact, it is equation (8)
(the Ledrappier–Young formula) which has to be deduced from equations (7) and (9). However,
it is useful to understand the relationship between theεp-neighbour points and the invariant
quantities of the underlying chaotic systems. To determine an invariant under the evolution of
the system, we need to take the average ofn(yk+p, ε) and normalize it by the total numbers of
data points. Averaging over the attractor, we can define the average number ofεp-neighbour
points of the attractor as

np,ε = 1

N − p
N−p∑
k=1

n(yk+p, ε). (10)

We can also express the average number of theεp neighboursnp,ε in another way, which
shows the relationship betweennp,ε and the so-called correlated sum [9]. Suppose we rewrite
np,ε as follows: for anyyk, k 6 N − p

n(yk, ε) =
N∑
j=1
j 6=k

θ(ε− ‖ yk − yj ‖) (11)

whereθ(x) is the Heaviside function. Byn(yk+p, ε), we mean the number of points that always
stay within theε-neighbour until thepth step. Thus, fork 6 N − p, we have

n(yk+p, ε) =
N−p∑
j=1
j 6=k

p∏
i=0

θ(ε− ‖ yk+p − yj+p ‖). (12)
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After averaging, we obtain

np,ε = 1

N − p
N∑

k,j=1
j 6=k

p∏
i=0

θ(ε− ‖ yk+p − yj+p ‖). (13)

Note that this is different from the well known correlation sum [8,9]:

C(q, ε) = 1

N

N∑
k=1

{
1

N

N∑
j=1

θ(ε− ‖ yk − yj ‖)
}q−1

(14)

which relates more to the distribution of the points on the whole attractor. Our approach places
greater emphasis on the dynamical process of the system. As mentioned above,np,ε describes
the average of certain local property of the dynamical system. Since the most prominent
characteristic of a chaotic system is the exponential divergence of nearby orbits, we expect
to be able to identify the chaotic system by the way of the evolution of lnnε,p with p andε,
based on equation (9). For a totally random system, since there is no deterministic relationship
between the consecutive points in an orbit, we can expect there is no such relationship between
these quantities. (We shall discuss in greater detail the case with independent uniformly
distributed noise later.) For practical calculation, however, the two parametersN (the length
of the time series under consideration) andε should be considered carefully. First, we shall
assumeN is large enough, which means the time series covers all of the important structures
of the underlying system, e.g., for a Lorenz system, we need the time series to at least visit
both the two lobes. This is to ensure that the average number of theεp-neighbours reflects
the property of the whole system and not just a part of the system. In practical applications, it
is difficult to know whether the number of the data points is indeed ‘large enough’ before we
know something about the system. The reasonable approach is then to investigate the evolution
of np,ε withN . If for someN0 there exists a stable value ofnε,p which is not sensitive to further
increase of the number of data points, then a value slightly larger thanN0 can be considered as
the acceptable value. In our numerical simulations reported here, we utilize all of the available
data points since our purpose is to examine if the method actually works as expected. Strictly
speaking, equation (9) is satisfied only in the sense of infinitesimally smallε. In practical
cases, however, this is clearly impossible due to the finite length of the time series. We shall
assume that ifε is small enough, equation (9) will still give us a good approximation. This
means that, for a givenN , we can find a range(εb, εu) of values ofε which is large enough
(e.g.εu/εb ∼ 10), and the evolution of the slope of lnnp,ε ∼ p is almost invariant in this
range. We then take this value as the estimate ofhKS . In practice, we chooseε large enough to
contain a sufficient number of points within theε-neighbourhood, and still be small compared
with the magnitude of the signal (between 1% and 10% of the attractor size). Our numerical
results show that, for many chaotic systems, a wide range of values ofε can work well to
capture the characteristic of the chaotic time series. It should be pointed out that the choices
of N andε are not, strictly speaking, independent, and we see no clear objective criterion to
determine just what the bestε value is. We only expect that it is dependent on the dimension
of the underlying chaotic system, the length of the time series (perhaps even the sample rate),
and the size of the attractor. But then this is a difficulty that every algorithm to detect chaos
from time series data suffers from. We have applied the above method to several systems. As
the simplest example, we consider the data set generated by the logistic map

yn+1 = λyn(1− yn) (15)

whereλ = 3.999. The result is displayed in figure 2(a). It is clear that for a wide range of
p andε, lnnp,ε shows a linear relationship withp, and the slope is about 0.65, reasonably
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close to the KS entropy of the system. We believe the difference is caused mainly by the finite
extentN of the data (only 1000 points are used), and we cannot get smallerε values because
the average minimum distance between points is restricted byN−1/d . However, since our
purpose is to detect the existence of chaos, it already gives us sufficient evidence to determine
the nature of the time series. There is no essential difference when applying this method
to higher-dimensional cases. As examples, we use the time series generated by the Hénon
map [10]

xn+1 = 1 +yn − ax2
n

yn+1 = byn
(16)

wherea = 1.4, andb = 0.3 (the{xn} series is used to reconstruct the state vector(xn, xn+1)),
and the more complicated Ikeda map [11,12]:

xn+1 = 1 + 0.9(xn cosωn − yn sinωn)

yn+1 = 0.9(xn sinωn + yn cosωn)

ωn = 0.4− 6

1 +x2
n + y2

n

.

(17)

Figures 2(b) and (c) show that the results are similar to the one-dimensional logistic map
case. (Note that the choice of data sets of 1000, 2000 and 3000 points for, respectively, the
logistic map, the H́enon map and the Ikeda map is arbitrary but, in general, more data are needed
for high-dimensional systems.) The slight variation of the slope for smallε values in figures 2(b)
and (c) is probably caused by fluctuations due to insufficient data. This certainly appears to
be the case when we use a larger data set (e.g.N = 10 000), as shown in figure 2(b). For
high-dimensional cases, the phenomenon which is worth pointing out is that if the embedding
dimension is not large enough to unfold the attractor completely, we will not get the correct
result. For example, (see figure 3), for the Ikeda map, if we reconstructed the attractor as a
two-dimensional system, we do not get the linear relationship between lnnε,p andp. (The false
nearest neighbours method [8,17] indicates that although we can unfold the attractor completely
usingdE = 4, the percentage of the additional false nearest neighbours is very near to zero
whendE change from 3 to 4, sodE = 3 is a good enough estimate [13].) Therefore, this
method also provides a rough method to indicate an appropriate embedding dimension for the
given data which is known to be chaotic. In figure 2(d), the identically independent distributed
(i.i.d.) noise (uniformly distributed in [0, 1]) is used to test the method. As expected,np,ε drops
with p dramatically. In this case, we can get some more detailed results. Since the noise signal
{xn}, n = 1, 2, . . . , N is distributed in [0, 1], then for any arbitrarily picked reference pointxr ,
the probability for anyxn (n 6= r) to drop into theε-neighbourhood ofxr is ε. Thus the number
of ε0-neighbour points ofxr is n(xr+0, ε) ∼ εN , andn(xr+p, ε) ∼ εp+1N ∼ n(xr+0)ε

p for the
εp-neighbour points. Therefore, the average number ofεp-neighbours lnnε,p ∼ −p ln 1

ε
. (For

example, in figure 2(d), the expected slopes are−2.99 and−3.9 respectively forε = 0.05 and
ε = 0.02; the actual results from numerical simulations give−2.35 and−3.54.) This points
to the conclusion that with typical small values ofε, the slope in the linear relationship for
noise is very steep, and more importantly, the slope will change dramatically when we vary
the value ofε, in contrast to the case of chaotic signals. We have also applied this method to
the set of surrogate data from the logistic map. Since some correlations of the chaotic signal
are preserved when we generate surrogate data, we are dealing withcoloured noise. We use
this term here to refer to noise which is not of the i.i.d. type (or white noise), and are not
referring specifically to noise with power-law spectra (or so-called 1/f α noise [20–22]). The
standard procedure [16] is followed: we first take the Fourier transform of the original data
as used in figure 2(a), the phase is then randomized, and then the inverse Fourier transform is
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Figure 2. The relationship between lnnε,p andp for various time series data. (a) Time series
generated by the logistic map, equation (15). (N = 1000 points are used.) (b) Time series generated
by the H́enon map, equation (16). Only{xn, n = 0, 1, . . . , N,N = 2000} are used. The phase state
is reconstructed by{xn, xn+1}. (c) Time series generated by the Ikeda map, equation (17). Only
{xn, n = 0, 1, . . . , N,N = 3000} are used and the phase state is reconstructed by{xn, xn+1, xn+2}.
(d) i.i.d. random series. (N = 1000 points are used.) (e) The surrogate data from the time series
used in figure 1(a).
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Figure 3. The influence of the embedding dimension for
the Ikeda map (as in figure 1(c)). {xn, n = 0, 1, . . . , N},
N = 3000 are used.

taken to obtain the surrogate data. The resultant data are random but retains the variance and
autocorrelation of the original time series. Figure 2(e) displays the typical result. It reflects
clearly the characteristic of noise except for some minor differences; specifically, the linear
scaling range (in which lnnε,p andp have a linear relationship) is larger than that for the
white noise case, but the slope still varies with differentε values (see figures 2(d) and (e),
the case ofε = 0.05). We believe that this is caused by the remaining autocorrelation in
the surrogate data. We also found that in the case of 1/f α noise, the characteristic metioned
above can still be observed. Further study is necessary to determine how the present method
can discriminate between these different kinds of randomness. Most of the existing methods
of analysis will encounter some unexpected difficulty when applied to the real experimental
data. To examine the effectiveness of this method for real-world data, we have also applied it
to some experimental data [23], which are determined to be chaotic time series based on other
methods. 10 000 data points in the time series are used in our analysis. A segment of the time
series is displayed in figure 4(a). We reconstructed the phase space with the parametersd = 3
andτ = 22, which give the first minimum in the mutual information. The results are shown
in figure 4(b), which indicates the chaotic nature of the time series. For comparison, we also
displayed the result for the periodic time series which is generated in the same experiment
with different parameters. We expect that the results will be slightly different when different
embedding parameters (e.g.τ and d) are used. Because this is a continuous time series,
general methods are still lacking for the best choice of time delayτ and embedding dimension
d, and we cannot tell which is the best result. In figure 4(b) we just present one of the typical
results. However, the qualitative characteristics are the same for different parameters: for
periodic data, lnnε,p is essentially flat asp is varied, whereas a positive KS entropy is strongly
suggested in the chaotic case. We would like to point out that another advantage of this method
is its behaviour with respect to the noise. As is well known, noise could lead to erroneous
estimation of the fractal dimension and Lyponov exponents of the system, and could present
various difficulties in the attempt to distinguish chaotic systems from stochastic ones. In our
method, however, this problem can be partly solved, at least for i.i.d. noise. If anε value is
suitably chosen, the method will eliminate the effects of the noise. More specifically, suppose
the variance of the noise isσ . If ε > σ , the existence of noise will not influence the result
(i.e. the slope of lnnp,ε versusp); and if ε < σ , the effects of the noise will tend to increase
the steepness in the slope. This can be understood as follows. Consider any pointxn in phase
space. If the variance of the background noise is smaller thenε, it cannot kick out all of
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Figure 4. The results for the experimental data from [23].N = 10 000 data points are used and
the phase space is reconstructed from recorded data withd = 3 andτ = 22. (a) The original time
series. (b) The relationship between lnnε,p .
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Figure 5. The effects of noise. The noisy data are obtained by adding 5% noise (evenly
distributed within [0, 0.05]) to the time series used in figure 1(a). The slope is calculated at
ε = 0.01, 0.02, . . . ,0.1. The results for clean data are also displayed for comparison.

εp-neighbour points ofxn, and a certain fraction of the trueεp-neighbour points remain. Since
the effect of the noise is identical everywhere, and the false neighbour points kicked in by noise
in fact have no contribution when we go to larger values ofp, the relationship between lnnε,p
andp will remain. However, for higher noise levels, since the true neighbour points will now
be totally submerged under the noise, the result obtained will show the typical characteristics
of noise. We show the behaviour of a chaotic system contaminated by noise in figure 5. In
this case, the time series (generated by the logistic map) used in figure 1(a) is mixed with
5% noise. We computed the slopes of lnnε,p ∼ p at some different values ofε for both the
noise-contaminated and noise-free cases. We can see clearly from the figure that the slope
changes radically whenε is near the variance of the noise. The method proposed here thus
provides a rough tool for estimating the signal-to-noise ratio through variation of the slope of
ln nε,p ∼ p when varyingε, which may be useful for the detection of chaotic dynamics in a
noisy environment. In conclusion, we propose here a new practical technique to characterize
the chaotic dynamics using the local properties of chaotic systems. We have introduced the
concept of thep-stepsε-neighbour points, and demonstrated that the average number of the
εp-neighbours can be related to the KS entropy of the system. By investigating the evolution
of the average number of theεp-neighbour points with the time stepp, we can identify and
differentiate low-dimensional chaotic systems. It is entirely based on the observed time series
and can be easily generalized to higher dimensions. The computation is relatively simple.
Furthermore, the method is robust to low-level noise, and may even be used to estimate the
signal-to-noise ratio in the data.
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